
1



2



We	in	the	geospatial	software	realm	take	a	number	of	truisms	for	granted.

The	ability	to	transform	between	coordinate	systems	is	
one	of	the	most	fundamental.

3



A	primary	challenge	of	geospatial	software	is	
how	to	project	a	drawing	of	stuff	on	a	round	sphere	onto	a	flat	plane.

There	are	centuries	of	effort	on	the	topic.

4



Some	might	argue	that	mapping	software	that	does	not	concern	itself	with	this	
challenge	is	not	credible.

5



The	ternary	constraints	of	direction,	distance,	and	shape	
loom	over	the	mapmaker	as	they	choose	
which	to	forgive	in	exchange	for	clear	communication.

6



Cheap	CPU	cycles	and	efficient	software	
were	required	to	support	the	computation	of	
fancy	curves,	
obnoxious	trigonometry,	and	
iterative	solutions	required	by	software	that	does	these	projections.

7



In	this	locus,	a	researcher	named	Jerry	Evenden in	the	Marine	Geology	group	of	USGS	
at	Woods	Hole	took	up	the	challenge	of	implementing	the	intricate	math	
colleagues	such	as	Snyder	and	Robinson	collated	and	created	in	their	eponymous	
books.

The	software	he	wrote,	PROJ,	has	wide	and	lasting	impact	throughout	the	geospatial	
software	industry.	

Today	we	will	look	back	on	PROJ	and	note	Jerry's	recent	passing	in	2016	with	a	
remembrance.

I	will	describe	how	PROJ	evolved	with	Frank	Warmerdam's	effort	to	become	
a	full	fledged	open	source	project	that	nearly	embedded	itself	in	every	open	source	
geospatial	software	in	some	way.

I	will	discuss	recent	developments	new	contributors	such	as	Kristian	Evers,	Thomas	
Knudsen,	and	Even	Rouault	have	made	that	will	keep	the	project	moving	forward	for	
years	to	come.
and	I	will	also	discuss	where	the	project	is	evolving.

8



Jerry	knew	he	was	going	to	be	a	scientist	from	age	ten.

He	wasn't	an	overly	emotional	person,	and	
he	prized	logical,	rational	thought.

Jerry	met	his	wife	Phyllis	in	Washington	DC	
where	she	was	a	park	naturalist	for	the	Park	Service.

Phyllis	mentioned	they	enjoyed	
going	to	the	pistol	range	together	in	DC	
before	they	moved	out	to	Denver,	
where	Jerry	took	a	job	doing	seismic	anomaly	fieldwork	for	the	USGS.

In	1976,	he	was	offered	a	transfer	to	
Marine	Geology	in	Woods	Hole,	Massachusetts.

It	was	there	where	he	lived	with	his	wife	Phyllis	of	51	years	until	his	death	last	year	in	
April	2016.

9



The	offer	to	go	to	Woods	Hole	coincidentally	timed	
with	the	era	of	mini	and	personal	computers,	and	
Jerry	quickly	started	using	them	at	USGS	to	solve	problems.

The	rapid	miniaturization	of	computing	
revolutionized	sensors	too,	and	
Jerry	collaborated	with	many	projects	using	them	
to	map	the	geology	of	the	ocean	floors.

Making	maps	that	legibly	covered	large	areas	
with	the	results	of	their	surveys	was	a	challenge	
for	Jerry	and	his	collaborators,	and	he	set	about	the	task	with	whatever	he	could	find.

10



Jerry	requisitioned	three	unix computers	he	called	
Larry,	Curly,	and	Moe	to
support	his	software	development	efforts.

He	wrote	a	map	rendering	software	
called	MAPGEN for	vector	rendering	of	maps,	and	
he	combined	that	with	a	typesetting	software	he	wrote
called	WOLF,	or	Word	Oriented	Line	Formatter,	
to	build	a	LaTeX +	Scalable	Vector	Graphics	of	its	day.

In	support	of	mapping	projects	he	was	doing	at	the	time,	
he	took	John	Synder's book	and	started	implementing	
projection	transforms	into	what	became	the	PROJ	software	library.

Jerry	retired	from	USGS	in	1993,	and	his	software	including	PROJ	lived	online	as	a	few	
tarballs
on	some	FTP	servers	until	Frank	Warmerdam
started	to	pick	them	up	in	the	mid	90s	

11



A	problem	with	software	that	spans	generations	is	
it	is	a	product	of	the	software	culture	and	problems	of	its	time.

Software	design	fashions	change

Software	tooling	changes.

Software	development	techniques	change

and	each	of	these	changes	at	different	time	scales.

Each	of	these	causes	software	to	atrophy	in	different	ways	too.

When	we	say	an	API	from	an	ancient	open	source	software	project	isn't
usable,	
we	really	mean	we	don't	have	a	
software	cultural	literacy	to	translate	it	to	today

12



Like	music	from	the	1940s,	

13



fashion	from	the	1950s,	

14



or	movies	from	the	1970s,
PROJ	was	software	born	of	its	culture.	

That	it	is	incidentally	useful	to	us,	
here	in	the	future,	
is	a	feature	unique	to	open	source	software.

Open	source	software	allows	anyone	
wishing	to	give	software	attention	
the	ability	to	keep	it	alive	indefinitely.

15



Like	an	antique	store	record	junky	spinning	45s,	
all	that	is	required	is	for	someone	with	enough	
motivation,	
enthusiasm,	and	
desire	to	keep
the	software	alive	simply	
by	paying	attention	to	it	and	
taking	care	to	keep	it	from	atrophying.

16



The	foundation	of	one	software	civilization	is	the	bones	of	another.

Software	eras	are	more	like	civilizations.

Long	lasting	software	is	like	art,	music,	or	culture	
that	survives	the	transition	from	one	civilization	to	another.

We	might	know	what	it	does,	and	
we	might	know	who	made	it,	but	
the	context	of	how	it	fits	with	its	peers,	or	
why	certain	choices	were	made	are	often	lost.

Even	when	something	is	carried	forward	
to	a	new	computing	future,	developers	who	come	later	
end	up	trampling	down	APIs	and	
wrapping	and	stacking	abstraction	over	them	
to	translate	the	disconnect.

PROJ	was	written	for	another	computing	time.

17



and	PROJ	was	written	for	computers	that	don't	exist	today.

Did	those	computers	even	have	one	tenth	of	the	computing	power	of	the
phones	in	our	pockets	today?

PROJ's	API	is	quite	natural	if	you	are	
culturally	steeped	in	consuming	1990s	
opaque	object	C	APIs,	
fume	huffing	macro	compiler	abuse,	
and	messy	include	structure	
that	was	once	organized	to	make	things	compile	faster.

18



PROJ	was	written	before	there	was	StackOverflow,

before	Google,

and	before	Usenet.

Programming	in	the	1980s	and	90s	
wasn't	the	simple	pasting	of	error	messages
into	a	search	engine	as	it	is	now

19



The	C	programming	language,
which	PROJ	is	written	in,
was	still	somewhat	new	when	Jerry	started	writing	PROJ	in	it.

Unix	and	C	were	just	about	ten	years	old,	
and	which	tools	would	survive	
the	test	of	time	was	still	in	doubt.

20



The	C	programming	language	helped	
smooth	over	many	rough	parts	as	a	system	language,
but	connection	of	tools	like	PROJ	
to	others	was	still	very	challenging	with	C	in	the	1980s	and	90s.

Assumed	API	norms	that	are	common	today	weren't	settled

Hardware	constraints	of	
memory,	cpu,	and	storage	
meant	program	efficiency	often	overshadowed

ease	of	code	reading,
ease	of	integration,
or	ease	of	reuse.

21



Successful	open	source	software	has	a	longevity	problem.

Authors	don't	optimize	today’s	creations	
with	the	expectation	that	they	will	
survive	the	culture	that	produced	them.

Here's	a	list	of	geospatial	cultural	dead	ends	
I've	contributed	to	or	used	in	the	past:

OpenEV.	
FWTools.	
OGDI.	
KaMap.	
CartoWeb.	
MIT	OrthoServer.	
Zope Cartographic	Objects
You	might	remember	some	of	these	names.	
It	took	me	a	while	to	come	up	with	them	actually,	
but	I	know	I	contributed	many	hours	to	more	than	a	few	of	them.

22



They're	just	gone	to	the	ether,	
and	no	one	pays	any	attention	to	them	anymore.

The	problems	they	solved	might	be	no	longer	relevant

The	problems	they	solved	are	done	better	solved	by	modern	tools

The	project's	majordomo	moved	to	more	
interesting	problems,	and	no	one	has	stepped	into	their	place.

My	own	attic	includes	a	bunch	of	ridiculously	
named	stuff	you've	never	heard	of	
based	on	technologies	you've	forgotten:	
PySDE.	Hobutools.	PyTerra.	libLAS.

23



Attention	is	life	for	open	source	software,	and	
it	is	gone	for	each	of	these.	
Without	attention,	these	tools	faded	into	dust	
with	aspects	of	the	problems	they	addressed	
being	resolved	in	the	context	of	a	new	development	cultures.

PROJ	is	a	software	too	critical	to	
our	geospatial	ecosystem	to	let	wither,	
even	if	that	means	we	need	to	translate	it	
into	today's	development	culture.

PROJ,	however,	wasn't	designed	in	
1983	for	2017's	computing	problems.	
It	was	designed	in	1983	for	1983's	problems.

24



The	funny	thing	is	PROJ	has	already	
jumped	this	gap	once	before.	
In	1998,	nearly	five	years	after	Jerry	retired	from	the	USGS,	
Frank	Warmerdam	started	using	PROJ	
to	provide	coordinate	system	transformation	
for	one	of	those	now	dead	projects	-- OGDI.

Frank	had	been	using	another
USGS	created	coordinate	system	library
that	few	probably	remember	-- GCTP,	but	
he	liked	PROJ's	description	language	
and	the	open	source	GRASS	software	project	
had	already	integrated	PROJ	to	give	him	a	head	start.

25



It	was	a	simple	thing	that	made	him	choose	PROJ	
-- GRASS	had	already	integrated	it	--
but	it	reverberated	our	entire	industry	as	
Frank	used	it	as	the	basis	for	a	software	stack	
that	soon	included	
libgeotiff,	shapelib,	and	ultimately	GDAL.

When	Frank	started	contributed,	PROJ	had	
a	coordinate	system	definition	language	and	
many	implemented	transformations,	but
it	was	still	missing	a	number	of	pieces	to	make	it	
a	complete	transformation	library.

26



It	was	missing	the	EPSG	database,	
one	with	which	we	are	now	all	so
familiar	to	provide	a	dictionary	of	transform	parameters.

27



It	was	missing	the	ability	to	transform	
between	datums other	than	NAD83	and	NAD27.

28



It	was	missing	an	open	source	software	license,	
tests,	and	a	revision	control	system	--
cornerstone	tenets	of	all	open	source	projects.

29



Frank	built	up	PROJ's	capabilities	to	include	
support	for	the	EPSG	database	through	distribution	
of	CSV	files	in	specially	designated	directories,	
and	he	enabled	PROJ	to	apply	datum	transformations	
by	pivoting	through	the	WGS84	ellipsoid.

He	coordinated	the	addition	of	modern	features	such	as	thread	safety,	
error	contexts,	integration	tests,	and	Makefiles
and	he	assigned	a	true	open	source	software	license.

As	Frank	continued	pushing	the	software	forward,	
Jerry	participated	on	PROJ's	open	source	mailing	list	
chiming	in	with	knowledge,	
history,	and	
opinions	about	the	scope	of	the	project.

30



Jerry's	original	vision	for	PROJ	did	not	include
things	like	datum	shifts,	but	the	practical	desires	
of	software	developers	looking	to	include	
the	capability	from	a	single	software	library	carried	forward.

Throughout	the	2000s,	PROJ	continued	to	improve	
in	capability	and	reach,	with	its	success	culminating	
in	other	developers	porting	PROJ	to	different	
computing	platforms	such	as	Java,	JavaScript,	and	.NET.

31



Frank	kept	PROJ	chugging	along	until	about	2011	
when	he	answered	a	Google	recruiter	email.	
He	eventually	moved	on	to	PlanetLabs,	and	
has	been	busy	there	ever	since	bootstrapping	
their	massive	data	processing	backend.

Planet	uses	PROJ,	GDAL	and	other	open	source	software	
Frank	pioneered	with	the	goal	of	capturing	a	3m	resolution	
satellite	photo	of	the	entire	earth,	every	day.	
They	are	well	on	their	way	to	achieving	that	too,	
with	over	100	micro	satellites	now	capturing	data.

Frank’s	moving	on	caused	PROJ	languished	a	bit.	
The	bug	tracker	continued	to	fill	up	with	items,	
including	security	issues,	
but	releases	stagnated.

32



My	company,	Hobu,	Inc.,	writes	LiDAR	software	called	PDAL,	which	is	very	dependent	
upon	the	ability	to	transform	between	different	coordinate	systems.

I	took	it	upon	myself	to	take	on	the	task	of	applying	and	shepherding	fixes	in	the	bug	
repository	and	organizing	an	approximately	annual	release	process.

I	don't	know	very	much	about	the	intricacies	of	coordinate	transformations,	but	I	do	
know	plenty	about	shepherding	open	source	software,	issuing	releases,	and	keeping	
the	train	moving.

With	that	experience,	I	started	to	organize	and	issue	roughly	annual	releases	to	
collect	and	squash	bugs,	patch	any	security	items,	and	include	small	new	features.

After	a	few	releases,	it	was	clear	to	me	that	the	documentation	infrastructure	for	
PROJ	was	terribly	deficient.

There	were	a	couple	of	very	old	PDFs	that	Jerry	had	written	while	he	was	still	working	
at	USGS	 available	online,	bits	and	pieces	of	unorganized	wiki	pages	spread	across	
about	three	generations	of	project	infrastructure,	and	some	light	source-tree	
documentation.

33



During	the	OSGeo Paris	Code	Sprint	in	2016,	
I	embarked	on	improving	PROJ's	infrastructure	
to	allow	the	project	to	start	to	treat	the	documentation	
just	like	it	was	treating	the	code.

After	the	Paris	effort,	every	commit	to	the	repository	
now	regenerates	the	entire	projct website,	
including	a	single	PDF	with	its	entire	contents	--
approximately	135	pages	long.

Other	contributors	such	as	
Kristian	Evers,	
Julien	Moquet,	and	
Elliot	Sales	de	Andrade	
saw	the	website	effort	and	started	working	
to	pull	forward	content	and	port	those	PDFs	of	Jerry's	into

34



a	corpus	of	supported	projections,

clear	equations	for	forward	and	inverse	methods

a	nice	representative	graphic	showing	what	each	projection
might	look	like

and	some	notes	on	usage	and	caveats.

After	implementing	the	Sphinx	documentation	system	
and	coordinating	a	spiffy	new	URL	for	the	website,	
proj4.org	was	enabled,	and	
we	worked	to	pull	down	all	of	the	old,	
misleading,	and	out-of-date	bits	spread	throughout	the	internet.

35



There's	still	plenty	of	work	to	do.

Most	of	the	130+	projection	methods	PROJ	
supports	need	their	documentation	completed.

Some	of	that	information	still	resides	in	Jerry's	old	PDFs,	
and	meticulous	effort	is	required	to	verify	the	equations	
in	those	documents	match	the	math	in	the	actual	software.

Even	so,	the	new	website	is	a	dramatic	improvement	
over	the	previous	situation,	and	
documentation	infrastructure	is	critically	important	
to	a	software	project	like	PROJ	with	a	multi-generational	lifespan.

All	it	took	to	improve	the	situation	was	attention.

36



Seeing	renewed	interest	in	PROJ	after	the	website	refactoring,	
Kristian	Evers	and	Thomas	Knudsen	
of	the	Danish	Agency	for	Data	Supply	and	Efficiency,	
which	is	kind	of	like	the	Danish	equivalent	of	the	US	Geological	Survey,	embarked	in	
2016	on	an	effort	
to	bring	a	formalized	approach	to	datum	transformations	to	PROJ

37



As	Jerry	said,

"A	lot	of	luck	to	whoever	want	to	put	together	the	computational	part	of	the	datum	
shift	software."

Thomas	is	a	long-time	contributor	to	PROJ,	and	his	first	contribution	was	in
1999.

It	was	a	massive	undertaking.

Thomas	and	Kristian	started	by	porting	a	library	called
trlib,
originally	written	by	the	Danish	agency	in	Algol	in	1961.

The	end	result	is	new	versions	of	PROJ	will	support	
14-parameter,	time-dependent	shifting,	and	
users	will	be	able	to	create	their	own	shifts	
using	Thomas'	generic	transformation	pipelines.

38



Thomas	and	Kristian	targeted	PROJ	for	this	
contribution	for	a	couple	of	slightly	selfish	reasons	--

PROJ	is	the	most	widely	used	coordinate	system	
transformation	library,	and	their	hope	was	
wider	availability	of	transformation	pipelines	will	mean	
broader	support	of	their	precision	needs	flowing	
back	toward	them	in	commercial	software.	
It's	the	virtuous	circle	of	open	source.

More	attention	begets	more	attention.

39



Even	Rouault	recently	submitted	PROJ	to	the	Google	Open	Source	Software	Fuzz	
project.	Fuzz	clones	the	PROJ	software	repository	every	day,	
builds	it,	and	runs	tests	designed	to	highlight

buffer	overflows,
uninitialized	memory,
and	exploitable	assertions.

When	Fuzz	finds	something,	it	automatically	creates	a	bug	report	in	a	private	
repository	for	developers	to	fix.	After	a	month,	that	bug	report	becomes	public.

Even	has	also	been	using	this	capability	for	improving	the	security	hardening	of	GDAL	
project	too.

For	projects	such	as	GDAL	and	PROJ,	tools	like	Fuzz	keep	them	relevant	and	safe	in	
today's	harsh	computing	environment.	This	is	especially	true	in	situations	where	code	
written	in	1983	potentially	processes	random	input	over	the	internet.

40



Jerry's	initial	development	and	Frank's	maintenance	made	the	library	an	
indispensable	tool	in	most	geospatial	people's	toolkits,	
whether	they	use	it	explicitly	from	the	command	line,	
or	embedded	in	software	that	hides	it	from	them.

New	contributions	from	people	like	Thomas	and	Kristian	and	Evan
will	keep	it	going	for	an	unpredictably	long	future.

Thanks	Jerry	for	letting	all	of	us	use	PROJ,	which	has	and	will	continue	to	impact	the	
world	by	providing	the	math	to	compute	where	we	are.

41


