
M ost point-cloud processing
tasks do not require all the
data, but commonly used

lidar formats require programs to read it
all—whether over a network or directly
from disk. In the case of compressed for-
mats such as LAZ, reading it all means
extra effort to decompress everything
too. An ideal format is widely supported,
is openly specified, and eliminates the
need to read and decompress all the data
for applications that desire only a spatial
or reduced resolution subset.

"e lidar domain to date has
lacked a widely supported and openly
specified data format with these features.

Compression and geospatial metadata
are well supported by the venerable LAZ
format from Martin Isenburg, which
builds on ASPRS LAS and has been avail-
able in the industry since 2012, but LAZ
on its own has not supported allowing
readers to perform spatial partitioning.
"e newly released Cloud Optimized
Point Cloud (COPC) draft specification
from Hobu, Inc. augments LAZ to
provide these features in an opt-in way.

Cloud Native Geospatial, or CNG, is a
term used to describe data organization
and formats that support data extraction
and processing from massive at-rest
data archives in cloud object storage. BY HOWARD BUTLER

Lidar consultancy
o!ers e"cacious
access to big
lidar datasets
in the Cloud

Cloud Optimized Point Cloud (COPC) allows
reduced resolution access to data.

Cloud Native Geospatial Lidar
with the Cloud Optimized
Point Cloud

34 LIDARLIDAR 2021 VOL. 11 NO. 5

https://laszip.org/
https://laszip.org/
https://lidarmag.com/2021/09/14/martin-isenburg-open-data-advocate-passes/
https://copc.io/
https://hobu.co/
https://medium.com/planet-stories/tagged/cloud-native-geospatial

CNG requires mixing data format
compression, indexing, and organization
according to the constraints that cloud
object storage imposes:

 ⦁ Accessing information from the
cloud is the same as accessing it from
a disk, except many times slower

 ⦁ Cloud formats work around this
limitation by putting the pieces of
data that applications want close to
each other in the file, dramatically
reducing the number of accesses
required

 ⦁ For spatial formats, the pieces of
data applications want are usually
close together in space, so “cloud
formats” push together data in
spatial clusters—tiles for imagery or
small volumes for point clouds

A canonical example of a data format
with these features in the geospatial raster
data domain is the Cloud Optimized
GeoTIFF (COG). COGs allow three
things at once. First, the raster data is
stored in the widely implemented and
standard TIFF format. Second, geospatial
metadata is provided using the standard
GeoTIFF OGC specification. !ird, the
“cloud optimized” part organizes the data

to allow software to incrementally access
data with as little processing and access
as possible when partitioning, filtering, or
sampling across the data. !ese features
allow raster users to opt-in to COG’s
capabilities as their software implements
it rather than requiring an abrupt
retooling or software development.

Two key features of LAZ enable this
opt-in ability in the point-cloud domain
with COPC. First, the LAZ format
supports partial decompression by storing
data in a series of data chunks. !e second
feature is the Variable Length Record
(VLR) concept of LAS/LAZ, which can
store application-specific support data of
any kind. By combining LAZ chunking
with VLRs that describe the octree
structure, COPC allows data to be written
in a LAZ file structured as a clustered
octree. When data are then accessed
according to the tree, software clients can
fetch and decompress only what they need
at the moment they need it.

!e design approach means that
clients that do not read the VLRs describ-
ing the COPC structure can still read all
the LAZ content without impact. !is
crucial feature enables software to export
COPC data and allows LAZ-reading
software to consume it without providing

special implementations of COPC
software. As with COG, a COPC file is,
in essence, “just an LAZ file”.

Kevin Murphy, developer of Applied
Imagery’s Quick Terrain Modeler,
responded when asked about COPC as a
format in the geospatial lidar ecosystem:

COPC offers explicit support at
near-zero cost (in terms of storage or
backwards compatibility) for many
of the most challenging issues for
indexing and management of large
lidar data archives. With COPC it
is trivial not just to seek1 through
file headers to find files of interest
but to do the same within large files.
If anything it reduces the need to
pre-cut your data into digestible
tiles, as you can quickly and easily
do overviews and pull tiles or chips
on-the-fly. And the best part is, none
of your exploitation software needs
to change. You can take advantage
of the advanced organizational
structure if you want, or just access
it like any old LAZ and go to town.

Software that reads LAZ already
supports reading COPC point-cloud
content, even if it cannot consume its
organization. A data provider can deliver

1 The word “seek” in computing parlance
has the same meaning as skip, but it also
means to skip in such a way so that the
moving forward doesn’t incur a cost—in our
case it is direct i/o or reading of the file AND
decompressing the bytes along the way.

Using a VLR and the LAZ chunk table, COPC allows point data
to be stored as octree nodes that clients can directly seek to
and decompress as needed.

COPC is designed to assist lidar software
developers in accessing large lidar data sets
in the cloud.

Hobu, Inc., the creator of COPC, is an open-
source software consultancy located in Iowa
City, Iowa.

36 LIDARLIDAR 2021 VOL. 11 NO. 5

continued on page 40

https://www.cogeo.org/
https://www.cogeo.org/
https://appliedimagery.com/

Ager guides the reader gently, explain-
ing concepts in words, introducing
technical terms only when necessary,
and illuminates the path with a stream
of simple, well designed graphics,
presumably developed for his own
teaching, together with excerpts from
SAR images and derived products. !e
material is not oversimplified, however,
and deriving maximum benefit from
his efforts requires concentration,
re-reading of sections and referring back
to concepts, symbols and acronyms
used earlier. Indeed, your reviewer
plans to read the book, cover-to-cover, a
second time! Ager’s goal of rendering the
technology comprehensible is unarguably
met, yet along the way some formidable

equations, for example for pulse repeti-
tion frequency and the signal-to-noise
ratio, are derived in easy steps. Moreover,
towards the end readers find themselves
believing that they could say something
intelligent during the design of an
airborne or satellite SAR sensor.

!e concepts are illustrated by
examples from a wide variety of
airborne and spaceborne SAR sources.
A table of these, as an appendix, would
be convenient and would, in the spirit
of the book, be limited in scope, giving
just launch dates, principal specifica-
tions and products, and country of
origin. !e danger, obviously, is that
such information inevitably would
quickly become outdated.

!e Essentials of SAR is self-published
and available on Amazon. It is pleasing
to the eye and your reviewer found few
errors or typos, although the author has
indicated some minor improvements
he would make if there were a second
edition or reprint. Readers interested
in SAR casually, professionally or
scientifically, as well as consumers of
SAR products who want to understand
their purchases better, ought to buy this
book. Ager has succeeded magnificently
is his mission to explain SAR in terms
that almost everyone can understand.
He has given thought to a sequel–LIDAR
Magazine would welcome it.

Stewart Walker, Managing Editor, LIDAR
Magazine.

40 LIDARLIDAR 2021 VOL. 11 NO. 5

COPC-organized content to clients, and
those with updated software can leverage
its advanced capabilities, while those
without can continue to use the format as
before. !e incremental opt-in approach
of COPC will enable software systems to
catch up at their own pace while allowing
the early adopters to take advantage.

A major feature of COPC that early
adopters can leverage is the ability to “range
read” the data they require when they
need it over HTTP. Range read capability
is a key feature of COG and it is necessary
for incremental access over cloud-storage
solutions such as Amazon S3 or Azure
Blob Storage. Incremental access means
that a browser-based visualization client
or an adaptive-processing technique can
pan through the data over the internet,

over the local file system, or over cloud
object storage and control the data access
resolution and extent efficiently.

Proprietary point-cloud formats exist
that provide some of COPC’s features,
especially those combining compressed
storage with data organized as clustered
octrees. None of them is openly
specified, and none provides open-source
software APIs to consume and produce
them, however. Importantly, none of
them is a valid delivery format that meets
the USGS Lidar Base Specification.

!e COPC specification is open
source and available at copc.io. Open-
source tooling such as Potree, PDAL,
and Untwine are being updated to
support reading and writing COPC data.
!us we hope that software vendors

and data providers will see it as a useful
enhancement to apply to LAZ data being
delivered for tackling the large-scale data
management and processing challenges
that lidar data provides.

Howard Butler is the founder
and president of Hobu, Inc.,
an open-source software
consultancy located in Iowa
City, Iowa. Hobu focuses on
point-cloud data manage-
ment solutions. He is an

active participant in the ASPRS LAS Committee,
a Project Steering Committee member of both
the PROJ and GDAL projects, a contributing
author to the GeoJSON specification, and a
past member of the OSGeo Board of Directors.
With his firm, Howard leads the development of
the PDAL and Entwine open-source point-cloud
processing and organization software libraries.

Butler, continued from page 36

https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Range_requests
https://copc.io
https://potree.org/
https://pdal.io/
https://github.com/hobu/untwine

